
Next-Gen Machine Learning Supported Diagnostic Systems for Spacecraft

Athanasios Vlontzos1∗ , Gabriel Sutherland2 , Siddha Ganju 3 and Frank Soboczenski4
1Imperial College London, 2Oregon State University, 3NVIDIA Corp, 4King’s College London

athanasios.vlontzos14@ic.ac.uk, sutherlg@oregonstate.edu, sganju@nvidia.com,
frank.soboczenski@kcl.ac.uk

Abstract
Future short or long-term space missions require
a new generation of monitoring and diagnostic
systems due to communication impasses as well
as limitations in specialized crew and equipment.
Machine learning supported diagnostic systems
present a viable solution for medical and techni-
cal applications. We discuss challenges and ap-
plicability of such systems in light of upcoming
missions and outline an example use case for a
next-generation medical diagnostic system for fu-
ture space operations. Additionally, we present
approach recommendations and constraints for the
successful generation and use of machine learning
models aboard a spacecraft.

1 Introduction
Space agencies have a renewed drive to take human space ex-
ploration beyond Low Earth Orbit (LEO) and into deep space.
NASA’s Artemis program outlines a clear path to return to
the Moon and to go beyond to Mars [NASA, 2017]. Addi-
tionally, recent successes in the commercial space sector by
major players such as SpaceX and Blue Origin make human
spaceflight more accessible, affordable and future long term-
missions a reality. Yet future long duration spaceflight re-
quire systems that are independent of LEO operations such as
constant communication, the ability to transfer large amounts
of data via multiple systems in a relatively short time-frame
or the ability to request and exchange crew if needed. On
Earth, machine learning (ML) and machine automation is
already driving the next industrial revolution and resulted
in fully autonomous industrial processes in domains such
as agriculture as well as manufacturing [Ayaz et al., 2019;
Yang et al., 2019]. Spaceflight itself, however, is far behind
such advances. Here we discuss challenges ML supported
systems face in the space domain as well as the applicability
and advantages of ML systems on a spacecraft. We highlight
aforementioned items via an example of an autonomous med-
ical system and describe an infrastructure for the successful
development of such systems.
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2 Challenges for ML aboard Spacecraft
Space is hard and manned space exploration is dangerous
and unforgiving. Moreover, the long term effects of human
presence in microgravity are still not fully known. Current
space missions do rarely include a medical officer among the
crew and rely on specialists who are also trained in emer-
gency medicine. While this is sufficient for minor and trained
emergency cases, it does not allow for more serious and com-
plex medical treatments. Health related checks and emergen-
cies are handled in a tele-medicine regime where instructions
are communicated to the astronauts via ground to spacecraft
channels. In extreme emergencies the astronauts can always
make the journey back on Earth. As missions veer further
away from Earth, returning for medical treatment and relying
on simultaneous communications becomes infeasible as both
distance and communication latency increases exponentially.
For a deployed ML system aboard a spacecraft there are sev-
eral challenges to consider: a) limited live testing abilities
available, and testing in the form of payloads on missions
are expensive; b) systems that are deployed need to be at a
high technology readiness level (TRL) [Lavin et al., 2021]; c)
environmental effects may influence deployed systems. For
example, how ionizing radiation can affect deployed space
capable hardware [Page and Benedetto, 2005], affecting the
consistency of sensor behavior such as early or late sensor fu-
sion; leading to potentially corrupted data to be processed e)
payloads are constrained by weight, so shipping large com-
pute infrastructures is infeasible; f) fully autonomous appli-
cations can be found mainly on controlled environments that
assume almost complete access to information and environ-
mental parameters; g) and more importantly the lack of la-
beled data for each task along with limited interpretability
and explainablity of current ML systems add to the complex-
ity. Contrary to that, any space-faring vehicle is faced with
extreme environmental conditions that not only are hard to
control or predict, but in some cases are challenging to hu-
man scientific comprehension. Hence, ML systems must be
as robust as possible to changes of their operating environ-
ments.

3 Applicability & Advantages
Incorporating autonomous processes in a spacecraft is a com-
plex task as technology and the associated needs constantly



develop. Some key points, however, are: (1) Reduce La-
tency and Earth Reliance - A significant amount of oper-
ations aboard modern day spacecrafts and the ISS, require
the constant communication with mission control on Earth
[Dempsey, 2017]. As space exploration expands further away
from LEO and the Moon, the delay in communication repre-
sent an insurmountable obstacle for remote guidance, con-
trol and communications. Characteristically, we note that
the round-trip time for current communications with Mars
ranges between 5 and 20 minutes depending on the state of
the two planets orbits [NASA, 2020]. ML, thus, can resolve
the dependency on communications and perform the mission
critical information processing aboard. (2) Adapting Main-
tenance - Modern spacecrafts both manned and unmanned,
constitute extremely complex systems that even with the use
of automated checks are still prone to faults, especially when
faced with extraordinary circumstances. The crew might not
be able to solve the issues by themselves. To tackle this we
believe that ML systems can perform functions that transcend
anomaly detection and fault prediction. An ideal deployed
ML solution needs to account for automated maintenance and
resolution of faults both in hardware and in the software of the
spacecraft. (3) Reduce latency for functions that don’t require
manual intervention and can be conducted at scale. For ex-
ample, automated checksums for data or models (4) Recent
advances in ML like bit quantization, pruning, and hardware
approximations [Wang et al., 2019] enable inference on re-
source constraint edge devices which can also be similar to
the target hardware in space [Hiemstra et al., 2020].

4 Medical Use Case
In the previous sections we have set out some challenges as
well as advantages for the use of ML on spacecrafts. In this
section we will be exploring the medical use case. As men-
tioned before, medical treatment in space relies on commu-
nication with the earth, a reliance we need to remove as we
progress into deep space missions. A major part of medi-
cal treatment is the ability to inspect bodily functions in a
non invasive manner through the use of medical imaging de-
vices. Magnetic Resonance (MRI), CT-Scans and X-Rays are
widely used on earth but are not ideal for space use, as we
explain below. To this effect, we propose the use of Point
of Care Ultrasounds (POCUS) as a lightweight non ionizing
imaging solution.
ML Enabled Imaging: Medical imaging devices are often
slow, requiring significant resources to operate and store and
depend on the use of ionizing radiation (e.g. X-Rays/CT
Scans) that has negative effects on patients and doctors
alike [FDA, 2021]. One notable exception to the above
constraints is Point of Care Ultrasounds (POCUS). Mobile
device enabled Ultrasound (US) probes are safe for pa-
tients and doctors, require minimal resources to operate —
weighting less than 1kg— and offer real time imaging capa-
bilities [GEHealthcare, 2021]. However, acquiring medically
significant images with a POCUS probe is non trivial and re-
quires expert operators.

As expert users might not always be available in deep space
missions we envision the use of ML enabled POCUS probes

that guide the user to medically relevant areas.

Approaching the task of navigation one can identify
straight away the need to be able to determine where the
intelligent agent is with respect to the patients body. Basic
anatomy knowledge by both patient and other crew mem-
bers is assumed for the purposes of this application. Nav-
igating to points of medical interest, though is non triv-
ial. Following medical practice of first identifying stan-
dard planes and anatomical landmarks; reinforcement learn-
ing (RL) solutions of disembodied agents have been proposed
in [Alansary et al., 2019; Vlontzos et al., 2019] to perform
the above tasks, providing high accuracy and low computa-
tional constraints. [Milletari et al., 2019; Hase et al., 2020;
Li et al., 2021] expand the RL methods including the degrees
of freedom of the US probe into the agents action space and
optimize directly on identifying landmarks while controlling
a virtual probe. All the above methods, find themselves lim-
ited to the anatomies that they have been trained on, with
their computational burden rising exponentially when trained
to find standard planes or landmarks of multiple anatomies.

As such we believe that a hierarchical approach to the
problem would help keep complexity and computation low
enough for space craft applications while maintaining high
enough performance. Approaches like MAX-Q [Dietterich,
2000] have withstood the test of time and have theoretical
guarantees on convergence and the ability of the algorithm
that given a set of subtasks it can find the global optimal pol-
icy. In short, MAX-Q constructs a hierarchical action tree
that a higher level agent sets out subtasks for other agents.
In this fashion one can design a fully autonomous agent that
collects information in form of images through POCUS nav-
igation, assesses biomarkers based on measurements derived
from landmarks, and regresses the diagnosis.

Furthermore, [Eslami et al., 2018; Dinesh and Grauman,
2016; Ramakrishnan and Grauman, 2018] have shown that
incorporating modules that aid agents ”imagine” how scenes
would look like from different point of views, increases their
performance in scene understanding. Hence, we are firm be-
lievers that incorporating such modules in approaches like
[Milletari et al., 2019] would increase their performance ca-
pabilities.

Finally, as medical applications are of critical importance,
appropriate checks and balances should be put in place to
avoid any harm to the crew. We believe that a rule based
set of parameters should be developed in collaboration with
physicians that would constitute a fallback system. Hav-
ing no dependence on learned or inferred information we
are able to guarantee a basic level of care to the astronauts
in case all other systems fail. On top of the safety-net
rule based system, a causal inference infrastructure can be
used to assess the the probabilities of causality (Sufficiency
and Necessity) [Buesing et al., 2018; Kusner et al., 2017;
Louizos et al., 2017; Vlontzos et al., 2020; Budd et al., 2021].
Causal counterfactual inference enable us to assess the causal
links and potential outcomes of treatments providing, thus, a
more informed decision process.



5 Infrastructure considerations for ML
systems on Spacecraft

Developing novel ML methods to provide mission critical
treatments to astronauts is a hard task. In the previous sec-
tion we set out some thoughts on a potential application for
medical imaging aboard a spacecraft. In this section we will
be briefly exploring infrastructure considerations that are di-
rectly related to the operation and development of medical
imaging ML solutions. These considerations are also appar-
ent on earth bound ML applications but gain increased impor-
tance due to the edge cases that they are called to operate on
during spaceflight.
Data Collection Medical data acquisition is faced with a
series of challenges. The privacy of the patients donating
their data has to be protected throughout the data acquisi-
tion and model development processes. In order to com-
ply with all legal obligations, we propose the data to have
NIHR [NIHR, 2021] approved methods in place for making
patient data anonymous. While, storage of data must be in a
HIPAA [HIPPA, 2021] compliant platform. Federated learn-
ing also present promising methods in regards to secure data
processing [Konečnỳ et al., 2016]. Going beyond the need
of anonymization and maintenance we would like to draw the
readers attention to two constraints of increased importance
on medical ML applications
Domain Shift: Domain shift robustness is an open topic of
ML research that focuses on making existing methods robust
to distributional shifts from the underlying training data do-
main [Long et al., 2016; Zhang et al., 2020]. In medical
applications and more prominently in medical imaging ap-
plications domain shifts are easier to manifest and harder to
overcome. The first major factor in this phenomenon comes
from the equipment used. Medical equipment, when installed
in hospitals and health centers is configured by the seller to
the exact specifications of the attending physicians, as such,
two different doctors using the same base equipment on the
same patient can result in two quite different images. The
standardization of medical equipment configurations in space
missions would aid decrease the equipment induced domain
shifts.

Another domain shift source comes from the training pa-
tient characteristics. Different populations exhibit different
medical characteristics. Hereditary traits as well as pheno-
type derived attributes place an individual in different med-
ical risk groups and force pathologies to manifest with dif-
ferent probabilities. These differences, are often picked up
by ML algorithms as unwanted inductive biases, skewing the
learned conclusions. In the context of space missions, astro-
nauts have diverse backgrounds both genetically and in terms
of phenotype, as such models trained on a general population
not representative of the characteristics of the crew can pro-
vide skewed estimations of vital for diagnosis biomarkers. It
is imperative, then, that the deployed models are calibrated to
the genetic background and phenotype of the astronauts.
Anomalous phenomena: As stated in the above motivation,
the effects on human well-being stemming from prolonged
exposure to cosmic radiation and other space related phenom-
ena are not fully understood. It is unknown, hence how the

human body might react to adverse conditions. ML applica-
tions cannot, then, be expected to cover the full range of sce-
narios, on the contrary they should be expected to fail when
presented with data that constitute an anomalous effect. In
order to combat potential failure cases of the medical sys-
tems on-board a spacecraft, we suggest accompanying any
ML algorithm with an anomaly detection mechanism (per-
haps probabilistic or out-of-distribution mechanics), that flags
non standard bio markers [Winkens et al., 2020], and an ac-
tive learning [Settles, 2012] feedback pipeline such that new,
medical phenomena are incorporated in the evolution of the
medical algorithms on-board.
Computational Considerations High communication la-
tency creates the demand for on-board computation. How-
ever, cosmic radiation and weight offers strict constraints on
the available on-board compute resources. Cosmic radiation
is able to produce errors in modern scale computing units,
while weight restrictions exist in all parts of a mission, from
lift off to grounding. ML applications should, then, be able
to function without heavy computational needs, a non trivial
feat especially on medical imaging algorithms. This, rein-
forces our case towards the use of POCUS as they have been
shown to be computationally and physically lightweight. Re-
cently [Hiemstra et al., 2020] has shown that NVIDIA’s Jet-
son Xavier modules are able to withstand a significant level
of proton based radiation, making them optimal candidates
for on-board inference and fine-tuning infrastructure. NASA
has also awarded an SBIR contract to Numem [Gharia, 2020]
to develop a radiation hardened DNN co-processor for a wide
variety of ML applications, from low power machine vision
to healthcare.

6 Conclusion
ML supported medical diagnostic systems on spacecraft are
necessary for long-term space mission to overcome limi-
tations in ground-to-spacecraft communication and lack of
qualified medical crew. In this extended abstract, we outlined
the importance of incorporating ML enabled medical appli-
cations on spacecrafts and considered challenges that need
to be overcome in terms of anomaly detection and domain
adaptation. Finally, we discussed ideas on how to augment
existing POCUS algorithms such that they constitute a com-
plete diagnostic system. We gave the example of a hierarchi-
cal RL method that also includes causal inference checks and
balances such that the health and safety of crew members is
guaranteed. We hope that with this paper we highlighted the
final frontier for ML applications: space capable ML medical
systems.
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