
Deep Reinforcement Learning for Fault Adaptive Control

Luke Bhan1 , Marcos Quinones-Grueiro1 , Gautam Biswas1
1Vanderbilt University, Nashville TN, 37209 USA

{luke.bhan, marcos.quinones.grueiro, gautam.biswas}@vanderbilt.edu

Abstract
The degradation of a system property or parame-
ter reduces the performance of the control system
sometimes causing a complete breakdown. Fault
adaptive control focuses on developing algorithms
to mitigate the impact of system faults on the con-
trol task performance. Deep reinforcement learn-
ing (DRL) methods have demonstrated outstanding
performance for continuous control tasks. How-
ever, faults affect the system dynamics violating
the Markov property such that optimality guar-
antees are lost. We propose an adaptive control
scheme based on a combination of DRL and clas-
sic control to achieve fault tolerance. We empir-
ically demonstrate our approach on an octocopter
case study subject to motor faults. We compared
on-policy and off-policy algorithms for the adap-
tive control task. Results showed on-policy agents
outperforming off-policy agents for the trajectory-
tracking problem.

1 Introduction
Fault Adaptive Control strategies address the problem of im-
proving the control performance when systems operate in a
degraded manner due to faults [Blanke et al., 2016]. Clas-
sic fault adaptive methods require an accurate and compre-
hensive dynamic model of the system. Data-driven methods
like DRL, on the other hand, allow developing control strate-
gies by using data. However, DRL methods for direct con-
trol lose convergence guarantees for fault adaptive problems.
Recent approaches seek therefore to combine classic control
with DRL to leverage the best of both worlds [Fei et al., 2020;
Sohège et al., 2020]. We propose in this work a novel ap-
proach that combines parameter estimation techniques with
classic control and DRL to solve the fault adaptive control
problem. We compare the effect of different learning algo-
rithms on an octocopter trajectory tracking task subject to a
motor fault with varying magnitude.

2 Deep Reinforcement Learning
Reinforcement learning (RL) methods aim to solve an op-
timal control problem through learning methods. The con-
trol law is refined through the continuous interactions of a

learning agent with an environment [Sutton and Barto, 2018].
The learning problem is formalized through the Markov De-
cision Process defined by a four tuple: M = {S ,A,T ,R},
where S represents the set of possible states in the environ-
ment. The transition function T : S × A × S → [0, 1] de-
fines the probability of reaching state s′ at t + 1 given that
action a ∈ A was chosen in state s ∈ S at decision epoch
t, T = p(s′|s, a) = Pr{st+1 = s′|st = s, at = a}. The
reward function R : S × A → < estimates the immediate
reward R ∼ r(s, a) obtained from choosing action a in state
s. The objective of the agent is to find an optimal policy π∗
that maximizes the following criteria for ∀s ∈ S :

V π
∗
(s) = max

π∈Π
E

[∞∑
t=0

γtR(st, at)|s0 = s, at = π(st)

]
,

(1)
where V π : S → R is called value function and 0 < γ ≤ 1
is called the discount factor, and it determines the weight as-
signed to future rewards. The agent’s objective is to find the
policy that maximizes the expected sum of reward. Obtain-
ing a policy with optimality guarantees requires the following
two conditions to be satisfied

1. |R ∼ r(s, a)| ≤ C <∞,∀a ∈ A, s ∈ S

2. T and R do not change over time.

Systems subjects to faults undergo changes that cause their
dynamic model, represented by the transition function T , to
change over time [Dulac-Arnold et al., 2019]. Therefore,
learning direct control with DRL for fault tolerance is not
theoretically feasible. We propose a fault adaptive control
scheme that avoids using DRL for direct control in the next
section.

3 Proposed Fault Adaptive Control Scheme
We propose the combination of classic control schemes with
DRL as a solution to the Fault Adaptive Control problem pre-
sented in Figure 1. Classic control methods like Proportional
Integral Derivative (PID) Controllers remain dominant in real
world industry applications thanks to their simple structure,
ease of implementation, and wide variety of tuning methods
[Borase et al., 2021]. However, traditional tuning methods
for PID control do not account simultaneously for multiple
input-output systems and multiple PID controllers. Carlucho

et al. [2020] propose to use DRL for PID parameter tuning
to tackle the previously mentioned problems in robotic tasks.
Moreover, adaptation is required for control systems which
undergo through faults. Hence we extend the scheme pro-
posed in [Carlucho et al., 2020] to accommodate faults as-
suming they are not catastrophic (the system can continue to
operate in a degraded manner and implying that the PID con-
troller updates its parameters to recover performance. The

System

Parameter

Estimation

Classic

Controller

u

y

DRL

Agent

ρ

ξ y

Figure 1: Fault Adaptive Control framework

core of the proposed approach relies in the combination of pa-
rameter estimation techniques with DRL. We update the PID
controller when the value of the system parameter(s) associ-
ated with faults degrades the control task performance. The
measurements obtained from the system y ∈ <m are used to
estimate fault-related parameters ρ ∈ <n through estimation
techniques like the Unscented Kalman Filter and the Parti-
cle Filter [Daigle et al., 2012]. The estimated parameters are
used as inputs to the DRL agent (s = ρ) and the action of the
agent consists in a new set of parameters for the controller(s)
(a = ξ). We demonstrate the feasibility of the proposed ap-
proach in a complex control task presented next.

4 Octocopter control task
We consider an octocopter airframe dynamics model based on
Newton-Euler equations of motion for a rigid body [Powers et
al., 2015]. The octocopter’s cascade control scheme is shown
in Figure 2. This control approach allows for stabilization of
the position and orientation of the octocopter with respect to
a trajectory. A set of three PID controllers adjust the vehicle
attitude, and different three PID controllers adjust the posi-
tion variables, together forming nested feedback loops. The

Control
allocation

Motors Airframe
Altitude

controller

Position
controller

Attitude
controller

Z_ref

x_ref, y_ref

[x, y,Ψ]

z

Fz

Tx,Ty, Tz

VDC ω

Position, attitude

[Φ,Θ,Ψ]

 Φref

Ψ_ref

 Θref

Figure 2: Cascade Control scheme for the octocopter

reference trajectory is defined in terms of position and yaw
angle [xt, yt, zt, ψt]. The Altitude PID controller generates
the required force in the z direction. The position PD con-
trollers estimate, based on the current position of the vehicle

and yaw angle, the reference for the pitch (θ) and roll (φ) an-
gles. The attitude PD controllers generate the required torque
in each direction. The control allocation block transforms the
torques and force into a reference voltage for each motor of
the octocopter. Finally, each motor generates angular veloc-
ity according to the motor’s dynamics. More details of the
octocopter modeling and control allocation can be found in
[Quinones-Grueiro et al., 2021].

4.1 Fault scenarios
Typically, the degradation of the components of the octo-
copter increases monotonically from mission to mission. Mo-
tors are susceptible to mechanical degradation in the form of
bearing wear, and electrical degradation in the form of con-
tact corrosion and insulation deterioration [Abramov et al.,
2014]. Instead of generating faults through the manipulation
of control signals as it has been done in previous works, we
take a more realistic simulation approach and generate the
faults by modifying the value of the motor parameters. An
increase in winding resistance results in the loss of effective-
ness of the motor. Therefore, through the modification of this
parameter we generate faulty behaviors of the octocopter in
the trajectory-tracking task. In this work, we considered sin-
gle motor faults ranging between 3 and 8 times the nominal
value of the resistance of the motor shown in figure 3.

x

y

Fault

Figure 3: Octocopter motor fault configuration

4.2 DRL training approach and conditions
In this work, we considered training the DRL agent to
learn how to adapt the parameters of PD position con-
troller, this implies a four-dimensional action space a =
{Kx

p ,K
x
d ,K

y
p ,K

y
d}. The only information received by the

agent is the motor resistance estimated and the reward func-
tion is defined by R = (10 − error)/10 where error is the
Euclidean distance calculated between the position of the oc-
tocopter and the reference trajectory. We defined 10 meters
as the maximum deviation allowed from the reference trajec-
tory and we re-scale the reward between 0-1 as suggested for
continuous control tasks[Henderson et al., 2018].

We considered a change in the reference from (x = 0, y =
0) to (x = 5, y = 5) as the trajectory tracking task for sim-
plification purposes and assuming that the resulting architec-
ture will scale well as long as the changes in the reference
are smaller than the one experience during training. Different
fault magnitudes must be experienced by the agent to learn
how to adapt the position controller parameters. However,
we noticed that randomly selecting the fault magnitude for

each episode resulted in no convergence. We thus defined a
curriculum learning approach where we first expose the agent
to the lower bound of the fault magnitude until it converges
and then we generate for each episode with probability of 0.5
a fault with maximum magnitude. In this way, we avoid the
catastrophic forgetting problem for the agent.

We compare the performance of four different DRL al-
gorithms for learning to solve the presented Fault Adaptive
Control task: Proximal Policy Optimization [Schulman et
al., 2017], Deep Deterministic Policy Gradient [Lillicrap et
al., 2015], Twin-Delayed DDPG [Fujimoto et al., 2018], and
Soft Actor Critic [Haarnoja et al., 2018]. The first one is an
on-policy method while the last three are off-policy methods
with last two being improvements of DDPG. We performed
this experiment with the goal of determining which type of
method is more suitable for the specific task to be solved.
We define other relevant training hyper-parameters in Table 1.
For PPO we considered the same optimizer, discount factor,
and episodes configuration but with an initial learning rate of
0.0001. We tuned the neural network hyper-parameters with
grid-search approach and found the best architecture to be the
same for the actor and the critic with 2 layers and 64 neurons
in each one. We clarify that an agent updates its parameters
only after a complete episode to understand the effects of the
selected PD parameters along the trajectory tracking task. Fi-
nally, we do not explore in this paper the effect of biased pa-
rameter estimations on the task performance given the space
constraints.

Parameter Value
Discount factor 0.99
Optimizer ADAM
Initial learning rate 0.0001
Batch size 100
Replay buffer size (time-steps) 100000
Time steps of an episode 2000
Number of episodes 3000

Table 1: DDPG, SAC, and TD3 training parameters

5 Results
We show the training results over ten trials in Figure 4. As it is
shown, the agents trained with the four algorithms asymptoti-
cally converge. The agents first converge for the lower-bound
fault magnitude around 1000 episodes. Once the upper-bound
fault magnitude is introduced, the reward per episode decays
significantly for all agents. We observed that both PPO and
SAC achieved a better performance in terms of learning speed
and asymptotic performance. Figures 5 and 6 show the ab-
solute trajectory-tracking error during a complete episode for
each axis and a fault magnitude of 8 times the nominal value
of the resistance. It is clear from this figure that the final
agents obtained through the PPO learning method achieve
best performance in terms of mean and variance. We at-
tribute the poor performance of off-policy methods to the use
of the replay buffer. While algorithms like PPO guarantee
monotonic improvement, this is not the case for the off-policy

Figure 4: Reward comparison for different DRL algorithms

Figure 5: Testing error in the X direction

Figure 6: Testing error in the Y direction

methods tested. We consider that new sampling strategies
from the replay buffer have to be designed for training fault
adaptive control agents.

6 Conclusions
We presented a Fault Adaptive Control architecture combin-
ing DRL and classic control methods. We tested the proposed
framework with an octocopter considering a cascade control
scheme subject to faults in one of the motors. The position
controllers are adapted according to the fault magnitude es-
timated. We compared on-policy and off-policy learning al-
gorithms to train the DRL agent and found that the former
are more suitable for the fault tolerant task. As such, this
work provides a framework to modelling the complex Oc-
torotor dynamics when faced with a fault scenario and can
be applied in real-environments by initiating the fault based
DRL agent when a fault reaches a certain magnitude. There-
fore, future works will c extend the presented experiments to
multiple faults as well as a robustness analysis to understand

the effect of biased parameter estimations on the task perfor-
mance in both simulated and real-world Octocopter scenar-
ios.

References
[Abramov et al., 2014] I Abramov, Y Nikitin, A Abramov,

E Sosnovich, and P Bozek. Control and diagnostic model
of brushless dc motor. Journal of Electrical Engineering,
65(5), 2014.

[Blanke et al., 2016] Mogens Blanke, Michel Kinnaert, Jan
Lunze, and Marcel Staroswiecki. Diagnosis and Fault-
Tolerant Control. Springer, 2016.

[Borase et al., 2021] Rakesh P Borase, D K Maghade, S Y
Sondkar, and S N Pawar. A review of PID control, tuning
methods and applications. International Journal of Dy-
namics and Control, 9(2):818–827, 2021.

[Carlucho et al., 2020] Ignacio Carlucho, Mariano De Paula,
and Gerardo G Acosta. An adaptive deep reinforce-
ment learning approach for MIMO PID control of mobile
robots. ISA Transactions, 102:280–294, 2020.

[Daigle et al., 2012] Matthew Daigle, Bhaskar Saha, and Kai
Goebel. A comparison of filter-based approaches for
model-based prognostics. In 2012 IEEE Aerospace Con-
ference, pages 1–10, 2012.

[Dulac-Arnold et al., 2019] Gabriel Dulac-Arnold, Daniel J.
Mankowitz, and Todd Hester. Challenges of real-world
reinforcement learning. CoRR, abs/1904.12901, 2019.

[Fei et al., 2020] F. Fei, Z. Tu, D. Xu, and X. Deng. Learn-
to-recover: Retrofitting uavs with reinforcement learning-
assisted flight control under cyber-physical attacks. In
2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 7358–7364, 2020.

[Fujimoto et al., 2018] Scott Fujimoto, Herke van Hoof, and
David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 1587–1596. PMLR, 10–
15 Jul 2018.

[Haarnoja et al., 2018] Tuomas Haarnoja, Aurick Zhou,
Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learn-
ing with a stochastic actor. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pages 1861–1870.
PMLR, 10–15 Jul 2018.

[Henderson et al., 2018] Peter Henderson, Riashat Islam,
Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep Reinforcement Learning That Matters. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
32(1), 2018.

[Lillicrap et al., 2015] Timothy P. Lillicrap, Jonathan J.
Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. sep 2015.

[Powers et al., 2015] Caitlin Powers, Daniel Mellinger, and
Vijay Kumkar. Quadcopter kinematics and dynamics.
Handbook of Unmanned Ariel Vehicles, 2015.

[Quinones-Grueiro et al., 2021] M Quinones-Grueiro,
G Biswas, I Ahmed, T Darrah, and C Kulkarni. Online
decision making and path planning framework for safe
operation of unmanned aerial vehicles in urban scenar-
ios. International Journal of Prognostics and Health
Management, 12(3), 2021.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[Sohège et al., 2020] Yves Sohège, Gregory Provan, Mar-
cos Quiñones-Grueiro, and Gautam Biswas. Deep Rein-
forcement Learning and Randomized Blending for Con-
trol under Novel Disturbances. IFAC-PapersOnLine,
53(2):8175–8180, 2020.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

	Introduction
	Deep Reinforcement Learning
	Proposed Fault Adaptive Control Scheme
	Octocopter control task
	Fault scenarios
	DRL training approach and conditions

	Results
	Conclusions

