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Abstract

Spacecraft operators carefully review the engineer-
ing design of their satellites in order to select the
most important telemetry parameters to supervise
during operations. They set out-of-limits (OOL)
warnings based on manufacturers guidelines, hard-
ware manuals and system tests as well as their own
expertise and mission conditions. The limits are
set on single parameters or on synthetic parame-
ters (functional composition of several parameters)
and represent the automation of operators exper-
tise. From the assumption that, most of the time,
a spacecraft operates in good conditions, our ap-
proach aims at detecting breakpoints in the entire
spacecraft behaviour to extract a sequence of multi-
ple behaviours. Unusual changes of behaviour, de-
tected by a probabilistic approach, are then reported
as anomalies. This approach does not require prior
knowledge of what anomalies may look like and is
complementary to operators’ OOL approach. We
can extract a list of telemetry parameters that are
the largest contributors of the difference in an un-
usual change between two consecutive behaviours
by analyzing the changes in the dependency graphs
generated before and after the change.

1 Spacecraft behaviour extraction
Spacecrafts are complex dynamic systems that are carefully
designed, assembled, operated and monitored. However,
the search for the cause of most anomalous events is non-
trivial [Schlag et al., 2018]. OOL checks come with the draw-
back of needing to be defined manually. And they often offer
coarse detection of subtle changes in the telemetry that might
be precursor to future anomalies.

The Polaris project, supported by the Libre Space Foun-
dation [Foundation, 2021b], offers an open source machine
learning tool suite to analyze spacecraft telemetry data, in-
cluding related external data sources, for a deeper understand-
ing of the varied internal subsystems interactions and the im-
pact of the environmental situations and events in space.
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A project component, called BETSI (Behaviour Extrac-
tion for Time-Series Investigation) [Foundation, 2021a], uses
deep learning to find the breakpoints between the different
spacecraft behaviours, then detect which behaviour changes
are most abnormal. To detect breakpoints, BETSI uses a
timeseries segmentation approach [Lee et al., 2018] based on
an auto-encoder neural network architecture. Unlike [Hund-
man et al., 2018], all input telemetry is given as input to the
neural network. The rationale is that a behavior is defined by
the respective status of all telemetry, and cannot be extracted
by single telemetry analysis. The auto-encoder thus builds
features that reside in the central layer for each consecutive
chunk of time.

The automatically learned features of each time period are
then compared using the L2 norm based distance. As they are
the result of a dimensionality reduction, they can be consid-
ered as input signatures sensitive to input behaviour changes.

Three input parameters are required to be set in BETSI:
• Time window size: time period on which features will

be computed. If it’s too narrow, not enough informa-
tion can be gathered; if it’s too wide, the differences
between consecutive windows’ features risk not being
consequent enough;

• Stride: the time space between the start of two time
windows. Combined with the time window size, it de-
termines the overlap between two consecutive windows
defining how much information is shared;

• A threshold to extract the most important distances dif-
ferences that would highlight the most important break-
points. This threshold is defined as a percentage over the
average value making it easily adaptable to all telemetry.
A high value would mean that fewer events will be de-
tected and vice-versa.

2 Case study: Characterizing behaviour
changes for BOBCAT-1 cubesat mission

The cubesat mission BOBCAT-1 is a 3U cubesat built by the
Russ College (Ohio University, USA) and aimed at studying
the performance of GNSS navigation systems of other satel-
lites. On 2021-04-25 the mission operators reported suffering
from absence of de-tumbling; therefore, the Polaris project
team decided to run BETSI from 2021-04-01 to 2021-05-05,
a period enclosing that event.



Figure 1: Stacked normalized telemetry view of BOBCAT-1. Parameters: time windows of 25 minutes, stride of 10 minutes and distance
threshold of 50% to trigger breakpoints. Black and red dashed bars are BETSI breakpoints; the red dashed bars are the strongest behaviour
changes. The cyan dashed bar is the operators’ feedback on the critical event where spacecraft entered safe mode and de-tumbling was
deactivated. Periods A and B mark periods around the closest breakpoint to the the reported anomaly.

Figure 1 shows all detected events in that period. Some
events are close together while others are separated. The
idea is that, if consecutive time windows belong to the same
behaviour, the model would be able to reproduce its input,
window after window, with very similar feature vectors. If a
prominent change in the central feature vector is observed, a
break point is generated.

Breakpoints are marked by vertical bars in figure 1; they
are positioned with a precision depending on the time window
size and stride (spaces between time windows). As the bars
are placed at the start of each time window, the real break-
point (if there is one) might happen anywhere later in that
time window (in our case in 25 minutes).

A behaviour segment is a space between two breakpoints.
In the case of the anomaly reported by the operators at 2021-
04-25 05:40:00 (in cyan in figure 1), the closest BETSI break-
point precedes that anomaly at 2021-04-24 15:38:14 marks
a dividing line between two divergent behaviours (notes as
A and B in figure 1. Here, we turn to Polaris’ dependency
graph tools to continue analysis by characterizing behaviour
before and after this breakpoint. In order to characterize what
happened around this breakpoint we analyze the behaviours
space A and B using the Polaris dependency graph tool.

Figures 2a and 2b show the dependency graph calculated
on telemetry data belonging to period A and B, respectively.
Dependencies between telemetry parameters, are defined by
extracting the feature importance of the extreme gradient
boosting machine learning technique (XGBoost) as described
in [Ceglarek and Boumghar, 2021]. The graph based visual-
ization technique is inspired from previous work on enhanc-
ing situation awareness [Boumghar et al., 2018].

The structures of the two graphs, calculated on periods A
and B, are strikingly different. After the breakpoint (period
B), temperature parameters (in green) tend to have a much
more organized or hierarchical influence on each other while
before the breakpoint (period A), they were all influencing
each other in a disorganized manner.

3 Graph Analysis
The clear structural differences between the two dependency
graphs calculated on period A and B can help operators bring-
ing insightful hypothesis of what changes are remarkable dur-
ing this critical change. We note that not all breakpoints are
anomalous; a graph comparison based on data before and af-
ter each breakpoint can help categorizing breakpoints as nom-
inal or abnormal changes.

In our case, a more detailed analysis of the difference be-
tween the two graphs shown in figures 2a and 2b highlights
the following changes:

• 43 nodes connections have consequently changed values
with 21 of them being a reinforcement of their mutual
influence

• 41 new pairs have been connected from telemetry pa-
rameters (nodes) already active in the graph

• 12 new connections have been established from 4 newly
active telemetry parameters

The term active telemetry refers to a graph activity, in op-
position to the real activity of the parameter. A telemetry is
considered active in the graph when it has influence on oth-
ers. This influence is calculated with respect to all other influ-
ences, so one telemetry might be considered inactive because
others are much more influential.

Thanks to semantics attached to each node we can extract
information to interpret what is happening during a behaviour
change. In our case, 19 of consequent changes and 22 of
new pairs seem to be directly related to temperature param-
eters, proving 48% of the behaviour change is expressed in
temperature relations inside the spacecraft. The temperature
measurements that seems to have been impacted are from the
panels, board and processing unit. Temperatures effects are
greatly driven by orbit conditions, illumination conditions,
but also by how electronic components are involved in dif-
ferent satellite tasks.



(a) 3D visualization of the inter-influences of telemetry parameters in BOBCAT-1 before 2021-04-
24 behaviour breakpoint - on period A.

(b) 3D visualization of the inter-influences of telemetry parameters in BOBCAT-1 after 2021-04-24
behaviour breakpoint - on period B.

Figure 2: 3D visualization of inter-influences during period A and B. The different colors of nodes indicate the kind of telemetry they
represent: green for temperatures, red for solar panels voltage and intensity, dark blue for gyrometers.

The graphs have been generated from two time periods of
about 7.8 days and 4.5 days respectively; this means many
orbits were completed during these periods. This reinforces
the fact that the observed differences between the two graphs
are due to a real change in the operational mode of the satellite
instead of impact from external factors.

The other 51% of changes in the graphs show presence of
influence from the acceleration measurement, along with, but
not directly related to, changes between solar panels activity
and battery voltage and current. With the information that the
satellite started tumbling, we can hypothesise that changes
in rotation (angular acceleration) might have impacted the
way solar panels were illuminated, thus being a precursor be-
haviour for anomalies.

4 Conclusions

BETSI has demonstrated that insights are to be gained from
the examination of time series telemetry via deep learn-
ing. Through our analysis of BOBCAT-1 telemetry, we
have demonstrated that automated detection of behavioural
changes is possible, and matches well with satellite operators’
manual approaches to identifying and diagnosing anomalies.

In its current form, BETSI can identify these breakpoints
and provide them to operators in a form suitable either for
display using standard libraries, or as input for future anal-
ysis. The goal is to be able to provide meaningful reports
for data scientists or analysts who do not have an operations
background. BETSI, licensed under the LGPLv3, can also
serve as a core library for other applications.



4.1 Future work and vision
While BETSI serves as a strong foundation for detecting be-
havioural changes, we wish to integrate it further into Polaris
in order to complement existing Polaris tools and to expand
its capabilities. To that end, our next milestone will be two-
fold: easy analysis of data with BETSI by invoking it from
the Polaris command line; and interactive, automated display
of time series data with identified breakpoints clearly marked,
helping operators to make the most of this deep learning tool.

Future milestones include:

• improving our graph analysis by introducing the time
factor. This will help visualize the dynamic changes in
the graph in real or accelerated time;

• studying the sequencing of behaviours to detect if some
behaviour changes are precursor to anomaly events.

The fact that not all breakpoints are marked by operators
does not exclude the fact that they could mark anomalous
behaviour changes. The novelty of our approach resides in
the fact that we can learn from every breakpoint by analysing
the dependency graphs of each surrounding period, as well
as studying the sequencing of behaviours. This sequencing
would help operators understand which behaviour normally
or usually follow up another one, thus building a real knowl-
edge base of how the whole spacecraft behave.

Additionally, we are currently investigating the feasibility
of using the model built by BETSI in resource-constrained
environments for real-time detection and flagging of be-
havioural changes. Our goal is to demonstrate that even
modest cubesat hardware can successfully run state-of-the-
art machine learning models, supplying operators with auto-
mated insight into changes of behaviour that need attention
and paving the way for in-orbit, spacecraft-initiated anomaly
corrections.
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