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2Jožef Stefan Institute, Ljubljana, Slovenia
3LSE Space GmbH ,Gilching, Germany

4University of Cambridge, United Kingdom

Abstract
The Mars Express (MEX) spacecraft has been or-
biting Mars since 2004. The operators need to
constantly monitor its behavior and handle spo-
radic deviations (outliers) from the expected pat-
terns of measurements of quantities that the satel-
lite is sending to Earth. In this paper, we ana-
lyze the patterns of the electrical power consump-
tion of MEX’s thermal subsystem that maintains
the spacecraft’s temperature at a desired level. The
consumption is not constant, but should be roughly
periodic in the short term, with the period that cor-
responds to one orbit around Mars. By using long
short-term memory neural networks, we show that
the consumption pattern is more irregular than ex-
pected, and successfully detect such irregularities,
thus opening possibility for automatic outlier detec-
tion on MEX in the future.

1 Introduction
Spacecraft’ health and endurance depend on close monitoring
and accurate analysis of their telemetry data. Analyzing these
data is non-trivial since telemetry data are heterogeneous and
complex, comprised from measurements and activity records
from the different on-board equipment and sensors, typically
noisy and incomplete. In turn, operators need to constantly
monitor and analyze them, handling sporadic deviations (out-
liers) from the expected patterns of measurements that relate
to the spacecraft’s behavior.

Outlier (or anomaly) detection refers to identification and
investigation of rare (and unexpected) events and patterns in
the data, which do not conform to the underlying data dis-
tribution. In the context of spacecraft operations, typically
such outliers are a result of an on-board equipment malfunc-
tion or unexpected (and/or novel) environmental effect. In
this work, we analyze telemetry data from the Mars Express
(MEX) spacecraft to detect anomalies in the electrical power
consumption of MEX’s thermal subsystem which maintains
the spacecraft’s temperature at a desired level.

MEX, a long-lasting mission of the European Space
Agency, has been exploring Mars since 2004. It is responsible
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for a wealth of scientific data comprised of three-dimensional
renders of the surface and a complete map of the chemical
composition of Mars’s atmosphere that has led to important
scientific discoveries, such as the evidence of the presence of
water. Given the age and the current condition of MEX, moni-
toring this consumption and identifying unexpected malfunc-
tion has a direct consequence on the longevity of the space-
craft and its mission [Lucas and Boumghar, 2017; Breskvar
et al., 2017; Petković et al., 2019a; Boumghar et al., 2018;
Petković et al., 2019b]. We propose a machine learning (ML)
approach for identifying outliers in the MEX’s thermal power
consumption patterns. The proposed approach combines sev-
eral state-of-the art unsupervised ML methods for anomaly
detection to obtain accurate estimates of anomalous behavior.
We evaluate the proposed approach on 11.5 years of MEX
data showcasing its potential and practical utility with respect
to the identified outliers.
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Figure 1: The conjunction of Mars and the Sun (June 2015) caused
substantially different behavior of the MEX thermal subsystem.

2 Data
The data contains values of electrical currents running
through the 33 electrical heaters on MEX that are part of the
MEX thermal subsystem, spanning approximately 11.5 years,
from 2008-08-22 to 2020-01-17. In our analyses, we sum the
values of the individual heater lines in a total current x(t). We
analyze the time series x(t) on the level of 15-minute inter-
vals, as suggested in [Petković et al., 2019a]. Each interval
[ti, ti+1) (ti+1−ti = 15min) is assigned a value x(ti), which
is the average value of x(t) for that time interval.



On short term, we assume that the values of electrical cur-
rents should be roughly periodic with the period that cor-
responds to one MEX orbit around Mars, which takes ap-
proximately 6.75 hours. We use this period as the unit of
analysis and represent examples in the dataset as the vectors
xi = [x(ti), x(ti+1), . . . , x(ti+N−1)] of N = 27 consecu-
tive measurements of electrical current. The dataset contains
369,843 examples and note that consecutive examples over-
lap. Fig. 1 shows that the periodicity assumption is not true
for the long term.

3 Related Work
Anomaly detection is a very active field of research [Chan-
dola et al., 2009; Pang et al., 2020] that focuses on identify-
ing point or collective anomalies (when either a single data
point or consecutive data points are anomalous with respect
to the entire signal) [Pilastre et al., 2020]. In the context of
analyzing telemetry data, anomaly detection methods typi-
cally focus on out-of-limits checking (comparing the values
against predefined optimal operating ranges) and analysis of
aggregated statistical features [Martı́nez-Heras et al., 2012;
Fuertes et al., 2016; Martı́nez-Heras and Donati, 2014].
Other ML approaches include k-nearest neighbors (anoma-
lies in XMM-Newton and Venus Express), support vector
machines (for monitoring the status of a CNES-operated
spacecraft) and others [Yairi et al., 2017; Carlton et al.,
2018], including generative deep neural networks for de-
tecting anomalies in the LUNar Attitude and Orbit Con-
trol System (AOCS) SIMulator (LUNASIM) [Ahn et al.,
2020]. Similarly, there are several recent attempts at using
long short-term memory (LSTMs) networks for the task of
anomaly detection [Hundman et al., 2018; Pan et al., 2020;
Chen et al., 2021].

4 Our Method
We propose constructing a heterogeneous ensemble combin-
ing different models for outlier detection. The models are de-
rived from three unsupervised learning algorithms: k-means
[MacQueen, 1967], isolation forest [Liu et al., 2008] and
long short-term memory (LSTM) autoencoders [Hochreiter
and Schmidhuber, 1997]. The complete pipeline is presented
in Fig. 2. The outlier score of k-means is the distance of an
example to the closest center of the clusters, computed in k-
means. Isolation forest outlier score is the average depth of
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Figure 2: The proposed outlier detection approach: Train data is
used to learn three different outlier detection models. During test
time, the models are combined into an ensemble, by averaging the
individual model prediction into the final, ensemble, prediction.
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Figure 3: LSTM autoencoder architecture: an input layer, an en-
coder (comprised of two LSTM layers), a RepeatVector layer, a de-
coder (with two LSTM layers), time distributed layer and the output
layer. Triple arrows denote that a sequence (of length N = 27) is
passed to the next layer, while a single arrow denotes that only a
single number is passed. The RepeatVector layer copies its input N
times. The TimeDistributed layer is fully connected to the output
layer. The value of N corresponds to the number of data points in
one MEX orbit.

a tree, which isolates an example from the others. The out-
lier score of LSTMs is measured as the reconstruction error
(LSTMs learn the codes of the normal examples and then try
to decode them back).

For the task of outlier detection, we combine the individ-
ual outlier scores from the three different methods in order
to improve the overall performance, taking the classical idea
behind the ensemble learning for better predictive models
[Breiman, 1996]. Given the normalized scores smethod of the
three methods (linearly mapped to the [0, 1] interval), the final
score of the ensemble is defined as

sensemble(xi) =
1

3
(sk-means(xi) + sIsoFor(xi) + sLSTM(xi) ).

5 Experimental Setup
Parametrisation. We set the number of clusters in k-means
to k = 50, which allows for 50 prototypical curves of electri-
cal current, since the preliminary experiments with the elbow
method reveal that k = 30 prototypical curves could suffice,
but however k = 50 decreases the amount of false positive
alarms. The contamination parameter of Isolation Forests is
set to 0.001, i.e., we expect 0.1% of the examples to be out-
liers. The remaining parameters are set to the values recom-
mended in [Liu et al., 2008]. The LSTM autoencoders are
implemented using the Keras deep learning library [Chollet
and others, 2015]. A more detailed overview of the autoen-
coder architecture is presented in Figure 3. We use ReLU
function, since the preliminary experiments showed better
performance than tanh activation. The models were trained
for 1000 epochs using the Adam optimizer with a learning
rate of 0.001 (and with the recommended parameters) and
a batch size of 128 (chosen after evaluating batch sizes of
{25, 26, . . . , 214}). We use the last 20% of examples in the
train data for early stopping validation criteria: If no progress
has been made in the last 50 epochs, the training stops. The
objective function considered is mean-squared error.
Evaluation procedure. Since the data spans over 13 years,
we create 12 train sets DTRAIN with different lengths. All
train sets start on 2008-22-8 but end on December 31st of
each year (y ∈ {2009, 2010, . . . , 2020}). The respective test
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Figure 4: Outliers in the 2009 − 2010 period. The border between
the train and test data is denoted by the vertical dotted line.
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Figure 5: Outliers detected due to missing data in the 2011 − 2012
period.

sets start where the train set ended and is exactly one (Earth)
year long. The exception is the 2020 test set, which is less
than 2 months long. For each test set, we also identify the
10 orbits with the highest ensemble score sensemble which are
then manually inspected and explained by a MEX spacecraft
operator.

6 Results
We start with the test period 2009 − 2010, where the first
conjunction appeared (note that no conjunction was present
in the train data). Figure 4 shows that the ensemble outlier
scores (as well as the single model scores) correctly identify
this behavior as anomalous. Additionally, when the electrical
current values were unusually high, this was again detected
by the ensemble method (but not by some of the single mod-
els). Note that the conjunctions in later years are no longer
considered anomalous, since the models can learn from the
conjunction in 2009. In the testing period 2011− 2012, most
of the top-10 identified outliers are due to the missing val-
ues in the data (see Figure 5). Similar behavior can be also
observed in the testing period 2013− 2014.

The most abnormal patterns in the data (including the high-
est peaks in MEX’s operation) have been detected in the
2017 − 2018 period. As shown in Fig. 6, the conjunction
in that period has been classified by the ensemble as normal,
while some of the individual models (e.g., isolation forest)
have reported outliers. These outliers, however, quite diverge
from the expected behavior but still remain challenging to be
discovered by the models. This is further evident in the last
test period 2018−2019 (Fig. 7), where the anomalous records
of 2017 are used in the model-training process. In this sce-
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Figure 6: The most abnormal patterns in the data are detected in
2017.
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Figure 7: Outliers identified in the test set for the period 2018 −
2019. The models, while successful, slightly struggle to adapt to
new anomalous behavior.

nario, the models report higher error on the training data than
on the testing set (i.e., larger outliers are identified in the train-
ing set), meaning that the models while successful, struggle a
bit to swiftly adapt to the new behavior.

Another potential reason for this, is that the data in 2018
(and onward) differs from the previous years. In 2018, MEX
operations underwent a fundamental change, which required
a software upload. This process involved performing no sci-
ence operations for weeks, implementing the new method-
ology, as well as flying in novel configurations. This had
radical effects on the thermal power consumption. Which in
turn makes learning from or comparing 2018 to any preceding
year very difficult as it was so novel in so many ways.

7 Conclusion
In this paper, we propose an end-to-end ML approach for out-
lier detection in telemetry data – a heterogeneous ensemble of
thee state-of-the art methods for outlier detection: k-means,
isolation forest and LSTM autoencoders. We demonstrate the
utility of the proposed approach on several tasks of identi-
fying anomalous behavior in the electrical power consump-
tion of the MEX’s thermal subsystem. The results show that
such an approach is able to accurately detect all major out-
liers (such as unusually high electrical currents, missing data
and conjunctions). Moreover, this approach can provide addi-
tional insights into the spacecraft behavior during some rare
events, such as the Siding Spring comet avoidance maneu-
vers.
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Alessandro Donati, Marcus G. F. Kirsch, and Frederic
Schmidt. New telemetry monitoring paradigm with nov-
elty detection. In Proceedings of the 2012 SpaceOps Con-
ference, pages 1–9. American Institute of Aeronautics and
Astronautics, Inc., 2012.

[Pan et al., 2020] Dawei Pan, Zhe Song, Longqiang Nie, and
Benkuan Wang. Satellite telemetry data anomaly detection
using bi-lstm prediction based model. In 2020 IEEE In-
ternational Instrumentation and Measurement Technology
Conference (I2MTC), pages 1–6, 2020.

[Pang et al., 2020] Guansong Pang, Chunhua Shen, Long-
bing Cao, and Anton van den Hengel. Deep learning
for anomaly detection: A review. CoRR, abs/2007.02500,
2020.
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