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2Jožef Stefan Institute, Ljubljana, Slovenia
3ESOC, European Space Agency, Darmstadt, Germany

4University of Cambridge, United Kingdom
5ESAC, European Space Agency, Madrid, Spain

6Solenix Engineering, Darmstadt, Germany

Abstract
The INTEGRAL spacecraft orbits Earth since 2002
in a highly elliptical orbit, passing through the Van
Allen belts – areas with high-energy ionised par-
ticles that can damage the spacecraft’s on-board
equipment. An essential part of mission planning
and operation of INTEGRAL is thus the prediction
of its radiation belts entry and exit times. We pro-
pose a novel compact representation of the data and
evaluate its potential using several machine learn-
ing methods. The experimental validation identifies
gradient boosted trees with quantile loss as the best
performing method. By using our approach, INTE-
GRAL can perform 2 additional hours (on average)
of scientific measurements per orbit (with adjust-
ment for uncertainty at the 95th percentile). This
approach protects INTEGRAL from damages and
improves its scientific return at the same time.

1 Introduction
INTEGRAL (INTErnational Gamma-Ray Astrophysics Lab-
oratory) is an astronomical observatory of the European
Space Agency (ESA) that orbits Earth since 2002. It is in
a highly elliptical 64-hour period orbit, spending most of
its time (approximately 55 hours per orbit) observing high
energy sources, such as black holes, neutron stars, active
galactic nuclei (AGN), regions of nuclear emission lines, and
other exotic astronomical bodies. It also detects γ-ray bursts
(GRBs) in the dozens per year, and in real time. The highly
eccentric nature of INTEGRAL’s orbit, with an apogee height
of approximately 140000 km and a perigee of approximately
6000 km, allows it to spend most of its time out of the Earth’s
Van Allen radiation belts [Li and Hudson, 2019] (Figure 1) –
located in the innermost region of the Earth’s magnetosphere.
However, in the remaining time, the crossing through these
belts [Walker and Palmer, 2012] poses a great threat to the
endurance of INTEGRAL and its scientific payload.

The long-term success of the INTEGRAL mission de-
pends on accurate estimations of its radiation belts entry/exit
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Figure 1: Top-view projection of INTEGRAL’s trajectory through
the belts as presented in Walker and Palmer [2012].

times, which allow for precise planning of orderly deacti-
vation and activation of the on-board equipment. The on-
board autonomy function implemented in INTEGRAL’s cen-
tral data management unit issues environmental information
to each instrument every 8 seconds. Based on this informa-
tion, the on-board instruments respond to the predicted en-
try/exit times (typically computed several months in advance)
and ensure an orderly shutdown of the instruments before the
spacecraft’s entry in the belts, and a timely restart after the
spacecraft’s exit from the belts. Without accurate predictions,
the instruments are often forced to perform emergency shut-
downs and restarts based on the IREM readouts alone. This
is followed by a lengthy recovery protocol and delayed oper-
ation of the instruments.

In this work, we address the task of performing an accu-
rate and efficient end-to-end prediction of INTEGRAL’s en-
try/exit times of crossing Van Allen Belts. We also provide
safety margins on the obtained predictions by utilizing quan-
tile regression. The results from the experimental evaluation
show that using our pipeline yields more than 200 additional
hours (over the course of 100 revolutions) for doing science.

Most closely related to our work are those of Métrailler
et al. [2019] and Finn et al. [2018], which address the task
of modeling INTEGRAL’s crossing through the belts. The
former uses data-driven modelling to construct a dynamical
3D volume model for the Van Allen belts, which can be used
to predict the entry and exit times. It uses the radiation flux
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Figure 2: IREM counts for one revolution of the INTEGRAL space-
craft. The spike in radiation level indicates that the spacecraft is
inside the Van Allen belts.

measurements data collected from the radiation monitors on-
board INTEGRAL and XMM-Newton. The resulting model
captures the long-term trends and seasonal variations very
well, however, it struggles with the peak amplitudes. The
latter, a predecessor to our work, considers machine learn-
ing for predicting INTEGRAL’s entry/exit times, making use
of random forests for predicting IREM counts and in-belts
indicators from positional data only. We improve upon this
work in several ways by introducing other data representa-
tions as well as evaluating more suitable methods that ulti-
mately lead to better predictive performance. The proposed
approach also significantly improves upon the performance
of the model currently employed that is based on fitting a si-
nusoidal curve and applying an amplitude-dependent safety
margin modulated around two standard deviations of the fit
residuals. Currently, the pipeline proposed in this work is in
‘preparation and testing for deployment’ within ESA’s INTE-
GRAL Mission Planning & Spacecraft Operations.

2 Machine learning pipeline
To determine when the spacecraft enters the Van Allen belts,
we rely on the onboard radiation monitoring instrument
(IREM) measurements every 8 seconds. Figure 2 shows the
IREM counts for one revolution of the spacecraft. Because
they can be very noisy, we take median values from bins with
a coarser time granularity (5-15 minutes). Determination of
entry into and exit from the belts is based on a threshold
IREM count of 60.

The orbit of each revolution of the spacecraft is defined by
12 orbital elements Finn et al. [2018]. Additionally, we take
into account the eclipse times when the spacecraft is shad-
owed from the Sun by the Earth or the Moon. The orbital ele-
ments and eclipse times are available for several months into
the future, and are the basis from which we engineer features
that the models use to predict entry/exit times. We transform
all timestamps to phase values relative to the current revo-
lution: phase(t) = t−perigee time

period
, where perigee time and

period are revolution-dependent. The phase value goes from
0 at perigee to 1 at the next perigee.

We consider two data representations – positional and per-
revolution. In the positional representation (details in [Finn et
al., 2018]), the data is organized in a time series where exam-

ples describe the state of the spacecraft every couple of min-
utes (5 - 15 min). The state of the spacecraft is captured with
23 features: current timestamp (1), orbital elements (12), po-
sition and velocity in geocentric-equatorial coordinate system
(6), altitude (1), and binary indicators denoting eclipses (3).
With this representation, we can predict the IREM counts at
different timestamps. Alternatively, we can also threshold the
IREM counts and get binary indicators that tell us whether the
spacecraft is inside the Van Allen belts at the corresponding
timestamps. We can use both predicted IREM counts and in-
belts indicators to determine entry (and exit) times by finding
the timestamp at which the counts rise above (or drop below)
the threshold or when the in-belts indicators switch values.
In the per-revolution representation, the data is organized in
a time series of revolutions, where each example describes
one revolution of the spacecraft using the 12 orbital elements,
together with the times when the spacecraft enters and ex-
its eclipses. This yields a total of 18 features. Here we can
directly predict the entry/exit altitudes (or times) for a given
revolution. This gives us two target variables and we can treat
the problem as a multi-target regression task. Each revolution
takes approximately 64 hours. In the positional representa-
tion with a 15-minute granularity, there are 264 timestamps
(examples) during each revolution, which is a single exam-
ple in the per-revolution representation. The per-revolution
representation is therefore much more compact.

We consider several machine learning methods: k nearest
neighbor regressor (KNN), random forest ensembles of re-
gression trees (RF), extreme gradient boosting ensembles of
regression trees (XGB), gradient boosting ensembles of re-
gression trees with quantile loss (GB), fully connected neural
networks (FCNN), and recurrent neural networks (RNN) with
gated recurrent units.

For KNN, RF, and GB methods, we use the implementa-
tions as provided in the scikit-learn Python library Pedregosa
et al. [2011]. For XGB, we use the xgboost Python library
Chen and Guestrin [2016]. We implemented the neural net-
work models in the Pytorch framework Paszke et al. [2019].
While RNNs, in particular, are well suited for time series
data by design, the remaining methods require additional en-
gineering for taking the temporal aspect into account. To this
end, we add additional historical information to each exam-
ple, i.e., each example has access to the features of the pre-
vious n examples and the targets of the previous m exam-
ples. We call the value n feature history and value m au-
toregression history. For all methods, features and targets are
standardized (using only information from the learning data)
prior to model learning. In the end, the model predictions are
inversely transformed to get values on the original scale.

3 Experimental evaluation
We perform the evaluation in two stages: 1) we select the
optimal parameters of the machine learning methods; 2) we
compare the different methods with the selected optimal pa-
rameters to each other and the model currently used by the
mission planning team. For the first stage, we use the data
from 2015-03-19 to 2020-04-09 (695 revolutions). Within
this period, we select 100 cut-off points at random. For



each cut-off point, a method learns on data up to that point
and makes predictions from that point onward. The meth-
ods make predictions for 35 revolutions after the cut-off point
(cca 3 months). These predictions are used to evaluate differ-
ent parameter configurations of the methods. We optimize
both data preprocessing parameters (representation, granular-
ity, feature/autoregression history) and method parameters.

For the second stage, we use the data from 2020-04-09 to
2020-12-31 (100 revolutions). We want to test how well the
optimal parameters selected in the first stage generalize to this
validation period. In this stage, we simulate how the models
will be used in mission planning. Each method is asked to
produce a model every month, which is then used to make
predictions for the upcoming month. Because entry and exit
altitudes are what the mission planning team is ultimately in-
terested in, the models are evaluated by calculating the root
mean squared error (RMSE) of the entry and exit altitudes
determined from their predictions.

We obtained the best results with the GB method. With
optimized parameters, its entry altitude RMSE was 5998 and
exit altitude RMSE was 2941. In comparison, the entry and
exit altitude RMSEs of the currently used sinusiod model was
6028 and 8676, respectively. The parameter optimisation also
revealed that per-revolution representation is not only more
efficient but also produces more accurate models (Figure 3).

Compared to the currently used model, our approach is
much more accurate in predicting the exit altitudes, whereas
the errors of entry altitude predictions are somewhat similar.
A plausible reason for this is that, in the specific validation pe-
riod considered, the entries are especially volatile with above
average frequency of outliers and missing values (Figure 4).
On the other hand, exit altitudes are relatively stable in this
period, but slightly lower than in the past. Our models are ca-
pable of capturing these changes, in contrast to the sinusoidal
model which greatly overestimates the exit altitudes.

Another advantage of GB with quantile loss is that we can
take into account that some errors are more costly than oth-
ers. For instance, if the predicted altitude is too high (for
entry or exit), the instruments on the spacecraft will simply
shut down too early (or restart too late) therefore losing some
science time. However, if the predicted altitude is too low,
the instruments will shutdown earlier than anticipated (due
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Figure 3: Performances of different parameter configurations of RF
models grouped by the predicted target. The bottom whiskers show
the minimum RMSE, the top show the 95th percentile.

2220 2240 2260 2280 2300
revolution number

20000

30000

40000

50000

60000

70000

al
tit

ud
e

real entry
predicted entry

sinusoid entry
real exit

predicted exit
sinusoid exit

Figure 4: Comparison of real entry and exit altitudes to the upper
bounds obtained with the currently used sinusoid model and the GB
method. Lines showing real altitudes are discontinued where targets
are missing due to IREM crashes.

to emergency shutdowns) which interrupts ongoing measure-
ments that are carefully planned months ahead. Hence, it is
important to minimize the risk of such occurrences.

Currently, the mission planning team adds a fixed margin to
the predictions of the sinusoidal model. For the GB method,
we can modify the percentile that the model learns to predict
– instead of the 50th percentile (the median), we can predict
the 95th percentile. This gives predictions close to the up-
per bounds of the possible altitudes and minimizes the risk
of emergency shutdowns. Figure 4 show the real altitudes
together with the upper bounds obtained with the sinusoidal
and the GB models for entries and exits, respectively.

Performing mission planning based on the predictions of
the currently used sinusoid model would lead to loss of 294.5
hours of science time over the validation period. Because
the approach is quite conservative, the ongoing experiments
would be interrupted only once. On the other hand, relying on
the predictions of the GB method would lead to loss of only
94.3 hours of science time. This means that over the course
the validation period of 100 revolutions, our approach would
recover over 200 hours of science time equivalent to more
than 3 full INTEGRAL revolutions. Since the margin of our
approach is less conservative, the predicted altitude would be
too low on 13 occasions (for 12 entries and 1 exit).

4 Conclusions
This paper describes our approach to predicting INTE-
GRAL’s entry and exit times from the Van Allen belts. The
results of the empirical analysis comparing several machine
learning methods showed that the best performing method on
these tasks are the gradient boosted trees with quantile loss.
In particular, compared to the model that is currently used to
predict INTEGRAL’s entry and exit times, our model (with
adjustment for uncertainty at the 95th percentile) provides on
average 2 additional hours per revolution for performing sci-
entific measurements, i.e., a gain of 3 full INTEGRAL rev-
olutions over the course of 100 revolutions. These improve-
ments facilitate better mission planning and optimal use of
the on-board scientific equipment, thus further increasing the
scientific return of the spacecraft.
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