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Abstract
We present GalaxAI - a versatile machine learn-
ing toolbox for efficient and interpretable end-to-
end analysis of spacecraft telemetry data. GalaxAI
employs various machine learning algorithms for
multivariate time series analyses, classification, re-
gression and structured output prediction, capable
of handling high-throughput heterogeneous data.
These methods allow for the construction of robust
and accurate predictive models, that are in turn ap-
plied to different tasks of spacecraft monitoring and
operations planning. More importantly, besides the
accurate building of models, GalaxAI implements
a visualisation layer, providing mission specialists
and operators with a full, detailed and interpretable
view of the data analysis process. We show the
utility and versatility of GalaxAI on two use-cases
concerning two different spacecraft: i) analysis and
planning of Mars Express thermal power consump-
tion and ii) predicting of INTEGRAL’s crossings
through Van Allen belts.

1 Introduction
Spacecrafts operate in extremely challenging and unforgiving
environments. This calls for careful planning of their oper-
ations and close monitoring of their status and health [15].
The spacecraft monitoring includes analysing housekeeping
telemetry data that measure and describe the spacecrafts sta-
tus, its activities and its environment. These include tem-
perature values at different locations, radiation values, power
consumption estimates, status/command execution of active
on-board equipment, performed computational activities [22;
4; 1; 21; 14; 10; 20]. Analysing telemetry data is complex
and nontrivial, since such data is typically high dimensional,
multimodal, heterogeneous, with temporal dependence, has
missing values, and contains obvious outliers[22]. Based on
the analysis of telemetry data, the spacecraft mission-planing
and operations teams make decisions about spacecraft next
operations - what activities it will perform (in terms of its
mission) and when it will perform them.

In this paper, we present GalaxAI - a machine learning
toolbox for efficient and interpretable end-to-end data anal-
ysis of spacecraft telemetry data. We showcase its potential
by analysing telemetry data of two spacecraft operated by the
European Space Agency: Mars Express and INTEGRAL.

Mars Express (MEX), a long-lasting mission of the Euro-
pean Space Agency, has been exploring Mars since 2004. It
is responsible for a wealth of scientific discoveries, includ-
ing evidence of the presence of water (above and below the
surface of the planet), an ample amount of three-dimensional
renders of the surface, and a complete map of the chemical
composition of Mars’s atmosphere. The scientific payload of
MEX consists of 7 instruments, which need to be kept within
their operating temperature ranges (from room temperature
for some instruments to −180oC for others). To maintain
these temperatures, the spacecraft is equipped with an au-
tonomous thermal system composed of 33 heater lines that
consume a significant amount of the total generated electric
power - leaving a fraction to be used for science operations.
Hence, given the age and the current condition of MEX, mon-
itoring and optimally planning this consumption has a direct
consequence on the longevity of the spacecraft and its mis-
sion [13; 3; 17; 2; 19].

INTEGRAL is a space observatory designed to monitor
and detect gamma-rays with high-sensitivity. Since its launch
in 2002, it has been responsible for detecting iron quasars,
investigating high energy gamma-ray burst as evidence of
black-holes, supernovae remnants and active galactic nuclei
(AGNs), as well as providing imaging and spectroscopic ob-
servations of astronomical events in both the X-ray range and
optical wavelengths. During its 64-hour orbit around Earth
(with apogee of ∼140 000 km and perigee of ∼6 000 km),
INTEGRAL passes through the Van Allen radiation belts,
where radiation levels are high enough to potentially damage
the on-board equipment. While the spacecraft is equipped
with radiation sensors, these operate autonomously, and are
used for emergency instrument shutdowns, which are fol-
lowed by lengthy recovery procedures. Accurately modeling
and predicting the spacecraft’s position w.r.t these radiation
belts is important. This allows for better control over ac-
tivation/deactivation of on-board instruments and ultimately



leading to optimal scientific output [7].

2 Description of GalaxAI
GalaxAI follows a two-layer design, consisting of a back-
end and a front-end layer (Figure 1). The cornerstone of
GalaxaAI, its machine learning (ML) framework, is imple-
mented as a part of the back-end layer. Besides modularity
and easy-maintenance, such implementation also allows cer-
tain data/compute intensive ML routines to be automated and
executed on dedicated computing infrastructures.

The ML framework consists of three major parts: (1) data
preprocessing, feature engineering and selection, (2) model
construction (learning), and (3) making predictions with a
learned model. The first part includes various data prepro-
cessing techniques and feature engineering algorithms de-
signed and employed to pre-process the raw telemetry data
pertaining to a particular spacecraft. The second part focuses
on learning predictive models suitable for a considered data
analysis task. The third part of GalaxAI focuses on making
predictions and visualising the findings. These range from
simply plotting the predicted values to more sophisticated
analysis of the utility and relevance of the features used in
the model construction phase.

GalaxAI is also fully operable from a front-end layer
through a Graphical User Interface (GUI). This enables users
without any particular expertise in ML to execute different
parts-of or the complete data analysis pipeline. The interface
employs React [6] front-end library and Electron [8], a plat-
form for building desktop applications. For interactive visu-
alizations, GalaxAI employs the Plotly.js library [11].

2.1 GalaxAI-MEX
Input data. GalaxAI-MEX processes six heterogenous types
of data. These include solar aspect angles (SAA), detailed
mission operaton plans (DMOP), flight dynamics timeline
(FTL), various events (EVT), long-term data (LT) and power
data (PW). Details describing types of data are given by [17].
Data preprocessing. Given the heterogeneous raw data, the
preprocessing within GalaxAI-MEX includes data alignment,
feature construction, aggregation of the power data, and data
cleansing. The data is first aligned to a given time-granularity,
as the entries from various data files are recorded at irregular
paces. The next step of feature construction creates features
used for learning the predictive models. The aggregation of
the power-data includes computation of the average electrical
current (e.g., for every 15 minutes). Finally, data cleansing
removes/imputes records with missing values from the data.
Learning models. For learning predictive models, GalaxAI-
MEX implements several ML methods. Namely, it imple-
ments unified wrappers for XGBoost [5], PCT-based ensem-
bles [12], (deep) fully-connected neural networks [9], as well
as for all models implemented in the scikit-learn toolbox [16].
Moreover, it includes feature ranking methods to provide bet-
ter understanding of the models and the predictions. In par-
ticular, it provides three feature ranking scores [18] that cal-
culate the feature importance: (1) random forest mechanism,
(2) GENIE3, and (3) Symbolic scores.
Making predictions. At the final stage, the constructed
predictive models are employed for making predictions.
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GalaxAI-MEX employs various evaluation strategies for esti-
mating the performance of the learned models and the quality
of the predictions. Moreover, it includes a mechanism for
interpreting model outputs in terms of feature importance di-
agrams. These evaluation statistics together with the model
predictions, are the output of GalaxAI-MEX.

2.2 GalaxAI-INTEGRAL
Input data. To determine when the spacecraft enters the
Van Allen belts, we rely on the on-board IREM measure-
ments, taken every 8 seconds. The belts entry/exit times are
determined through thresholding these IREM measurements.
More specifically, when the counts are above 600 electron
counts per second, the spacecraft is determined to be inside
the belts. The orbit of each revolution of the spacecraft is de-
fined by 12 orbital elements. We also take into account the
eclipse times, when the spacecraft is shadowed from the Sun
by the Earth or the Moon. The orbital elements and eclipse
times are available for several months into the future, and
form the basis from which we engineer features that the mod-
els use to predict entry/exit times.
Data representation and preprocessing. Since we are inter-
ested in the orbital position of the spacecraft, all time stamps
are first transformed to phase values relative to the current
revolution. The phase values range from 0 at perigee to 1 at
the next perigee. For this task, we consider two data repre-
sentations – positional and per-revolution. The former, posi-
tional representation, is similar to the one proposed by Finn
et al. [7]. Here, the data is ordered in a series where examples
describe the state of the spacecraft using the orbital elements
and the IREM counts (or binary indicators whether INTE-
GRAL is in the belts or not). Thus one can consider two dif-
ferent tasks: regression (when predicting the IREM counts)
or classification (when predicting the binary indicator).
Learning models. GalaxAI-INTEGRAL implements several
machine learning methods: (1) k-nearest neighbor regres-
sor (KNN), (2) random forest ensembles of regression trees
(RF), (3) extreme gradient boosting ensembles of regression
trees (XGB), (4) gradient boosting ensembles of regression
trees with quantile loss (GB), (5) fully connected neural net-
works (FCNN), (6) recurrent neural networks (RNN) with
gated recurrent units. For some of the methods (KNN, RF,
and GB), GalaxAI-INTEGRAL employs the scikit-learn [16]
implementations. For XGB, GalaxAI-INTEGRAL uses the
xgboost Python library [5].

3 Interaction with data and models
GalaxAI provides The machine learning pipelines that are ex-
ecutable trough the toolbox are well-structured, documented,
and accessible by command-line interface, albeit most-well
suited for data science practitioners. Nevertheless, such
usage-scenarios can create some serious non-trivial chal-
lenges when used by engineers and operators who do not
have prior experience working with ML-based frameworks.
Such challenges include the choice of the predictive model,
choosing and setting model parameters, interpretability of the
model as well as explainability of its findings. The latter two,
in particular, are very important when it comes to increas-
ing the trustworthiness and facilitating the utility of predictive

models in practice, especially when working with black-box
models such as neural networks.

GalaxAI addresses these challenges by employing a user-
friendly GUI for executing ML pipeline(s), allowing for
both visual exploratory data analysis and visualization of the
model results. In particular, GalaxAI facilitates seamless exe-
cution of the ML pipelines by providing pre-selected learning
methods with optimal parameters (selected based on compre-
hensive experimental study). Next, the interactive nature of
the visualizations enables the domain experts to perform ex-
ploratory data analysis on the preprocessed data and interpret
the obtained models and predictions. Moreover, GalaxAI al-
lows for performing various ‘what-if’ analysis scenarios by
excluding data examples and/or features.

The GalaxAI GUI supports three types of visualizations:
Exploratory Data Analysis. Within GalaxAI, we have im-
plemented interactive diagrams (histograms and boxplots)
that enable users to explore the data. More specifically, the
diagrams allow users to select time-ranges for visualization
as well as to select several variables at the same time.
Predictions Visualization. In terms of visualising the model
output, GalaxAI implements several diagrams pertaining to
visualization of the obtained predictions and visualization of
the influence/importance of the descriptive features. The for-
mer involves an interactive scatterplot for visual inspection of
the predicted values. The latter gives more general overview,
allowing for quick assessment of the predictive analysis.
Feature Importance Visualization. GalaxAI allows for vi-
sual inspection of the feature-influence within the predictive
models. More specifically, it implements a special type of
interactive ’doughnut’ charts and pie charts for global and
local visualization of the importance of the predictive fea-
tures to the predictive task at hand. These charts provide the
means for better explainability of both models and predic-
tions. Namely, a feature is important when a model relies on
it for predictions. Thus, by observing the importance, one can
explain, to a certain extent, the model’s predictions.

4 Conclusion
Spacecraft monitoring and operation involve many challeng-
ing tasks and decisions - most often based on analysis of large
volumes of complex, multimodal, and heterogeneous teleme-
try data. These analysis, in turn, are used for monitoring the
spacecraft’s health as well as short/long-term operations plan-
ning. Therefore they need to be very accurate, but more im-
portantly, they need to provide better understanding of the
spacecraft’s status and support the decisions of the mission
operators and engineers.

In this work, we present GalaxAI - a versatile machine
learning toolbox for accurate, efficient and interpretable end-
to-end data analysis of spacecraft telemetry data. It im-
plements various machine learning pipelines that are well-
structured, documented, and accessible by command-line in-
terface useful for data science practitioners. It also offers
user-friendly graphical interface for executing the underly-
ing machine learning pipelines, and performing visual ex-
ploratory data analysis and model visualizations.
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[17] Matej Petković, Redouane Boumghar, Martin Breskvar,
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